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Received 22 September 1998, in final form 4 December 1998

Abstract. Open network liquids like B2O3 show an Arrhenius variation of the viscosity (or
structural relaxation time) betweenTg and the high-temperature limit, and provide the ‘strong’
liquid extreme of the pattern. ‘Fragile’ liquids have quite non-Arrhenius relaxation properties
and typically consist of molecules interacting through nondirectional, noncovalent interaction.
This strong/fragile liquid pattern has been used as the basis for a classification of glass forming
liquids to indicate the sensitivity of the liquid structure to temperature changes. In a recent paper
Barrio et al evaluated the probability of forming a ring in vitreous B2O3 by the stochastic matrix
method which is a description of the growth process of a solid. In this work we find a theoretical
Arrhenius equation for the average relaxation time (or viscosity) of the strong glass forming liquid
B2O3 using the stochastic matrix method proposed by these authors. To carry out our purpose
we take the average relaxation time as inversely proportional to the average transition probability
and the transition probability as the probability of forming a ring calculated for a large number of
steps of growth. We also introduce the temperature derivative method to recognize the functional
dependence for the viscosity.

1. Introduction

The transition from a liquid to a glass is characterized by an enormous increase of the viscosity
and the related structural relaxation time. As the glass transition is approached from the liquid
state the viscosity changes by some 15 orders of magnitude and the relaxation time rises
from picoseconds to some hundreds of seconds at which the system appears solid for most
experimental time scales [1].

The viscosity of B2O3, GeO2, SiO2 etc has been shown to exhibit an almost Arrhenius
dependence while the viscosity and rotation times foro-terphenyl, glucose [2] etc are quite non-
Arrhenius. On the basis of this property and others, supercooled liquids have been classified as
strong or fragile [3].Strongliquids (e.g., B2O3) show Arrhenius (ARR) relaxation processes
and typically have a three-dimensional network structure of covalent bonds.Fragile liquids
(e.g., o-terphenyl) have quite non-Arrhenius relaxation properties and typically consist of
molecules interacting through nondirectional, noncovalent interaction (e.g., dispersion forces).

The Vogel–Fulcher–Tamann (VFT) equation was formulated several decades ago [4–6]
to describe the behaviour of the viscosity and the relaxation time of a supercooled liquid as it
approaches its glass temperatureTg, namely,

τ = τ0 exp

(
B

T − T0

)
(1)
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whereτ0 is a reference relaxation time andB andT0 are two independent parameters taken to
be nonnegative. The VFT equation has turned out to be of practical importance for quantifying
the deviation from ARR (T0 = 0 in equation (1)) behaviour, yet no rigorous theoretical basis
has been established to date [7].

In recent papers Stickelet al [7, 8] compare in detail the temperature dependence of
fmax (the loss peak of dielectric data),σdc (dc conductivity) andη (viscosity) for a series
of glass forming liquids. In order to reveal the fine details of the log(x) data (x = fmax
(Hz), σdcε

−1
0 (s−1), η−1 (Poise−1)) as a function of temperature, they employ the method of

temperature derivatives. The method rests on focusing on the expressions dn logx/dT n and
dn logx/d(1/T )n (n = 1, 2) which reduce the number of remaining fit parameters and linearize
certain model functions. For instance, the VFT and ARR laws can be linearized by

[d logx/dT ]−1/2 = (T − T0)B
−1/2 (2)

whereT0 = 0 for the ARR dependence. The analogous expression on a 1/T scale again
linearizes the VFT case but transforms the ARR case into a constant,

[−d logx/d(1/T )]−1/2 = (1− T0/T )B
−1/2. (3)

They also define2(x) as the ratio of the first and second derivatives and for the VFT function,

2(x) ≡ [d log(x)/dT ]/[d2 log(x)/dT 2] = −(T − T0)/2 (4)

which gives direct access to the Vogel temperatureT0. In the case of simple activated behaviour
(ARR) it reduces to2(x) = −T/2, namely, no fit parameters remain. Such a plot of2(x)

againstT is obviously extremely sensitive to qualitative changes in the temperature dependence
of thex(T ) data, so that characteristic temperatures can be easily identified.

From the theoretical point of view, many efforts have been made in elucidating the
temperature dependence ofτ and other properties from the liquid glass formers. In a recent
theoretical work Barrioet al [9] used a statistical model in which the stochastic matrix method
is applied to find the fraction of boron atoms belonging to boroxol rings in a boron oxide
(B2O3) glass. They evaluated the characteristic energies related to the formation of a single
B–O–B unit in an oxygen bridge or in a boroxol ring and the probability of forming a ring.
The model also gives a reasonable qualitative prediction for a characteristic exponent ruling
the growth of microclusters, which may in turn be related to the specific volume.

The purpose of this work is to find for the B2O3 a theoretical Arrhenius dependence for
the viscosity using the results obtained from Barrioet al. In section 2 we summarize the
main features of the stochastic matrix method. In section 3, we present our results and their
comparison with experiment through the experimental ARR equation. Finally, in section 4 we
give some remarks on the nature of these results.

2. The stochastic description of the growth process for the B2O3 glass

In their paper Barrioet al [9] evaluated the concentration of boroxol rings in vitreous B2O3 by
the stochastic matrix method introduced by Kerner [10], which is a description of the growth
process of a solid. At each particular stage of the evolution of the growth of a solid, they
divided the growth into two parts: the rim (or the border), composed of all of the entities that
offer a potential possibility for a new entity of stick and agglomerate, and the bulk (or the
interior) that is, all of the units that have saturated all their bonds.

The process of growth at the rim can be described by a matrix acting on a vector. The
matrix components are the probabilities of finding a given site at the rim of a cluster of a certain
size. The vector components represent the probabilities of finding a given site on the rim of
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a cluster. The matrix transforms this vector into a new one, because the rim is changed after
adding one atom to the cluster. The transformation of the rim depends on the site on which
the new atom sticks. Each sticking process has a certain probability of occurring, so that the
matrix elements contain the probabilities of transforming each kind of site into others. The
probability factors should include two contributions: (1) the statistical weight for each process,
that is, the number of ways leading to the same final result, and (2) the Boltzmann factor taking
into account the energy barrier of forming a certain kind of bond.

The authors apply these ideas to the B2O3 continuous network. The elementary unit,
dictated by the bond chemistry, is a triangle B(O1/2)3, which they call a ‘singlet’. Two singlets
can be connected only using one bond to form a ‘doublet’. They assume that the energy cost to
form this bonding isE1. After a doublet is produced, two situations can occur if a new singlet
is added: the newly arriving singlet forms a longer chain (a ‘triplet’) or it can close a ring,
with a different energetic cost (E2), since one has to deform the bridge angles on a ring. The
agglomeration process occurs at a given temperatureT , at which the individual bonds reach
equilibrium. With this ideas in mind they can write the matrix (M) modelling the growth of
clusters by a successive application on an arbitrary initial vectorv0. Thus the evolution of the
probabilities on the rim afterj steps is given byvj = Mjv0. They also derive an expression for
the probability of forming a ring (P jB ) before many steps, obtained by counting the proportion
of ring that were formed during the process.

The final configuration depends only on the eigenvectors of the stochastic matrix. It is
easy to prove that a matrix with all the columns normalized to one has at least one eigenvalue
equal to one, while the others can be real, complex or imaginary, depending on the values
of the parameters involved. Only eigenvectors with norm one remain after many successive
applications of the stochastic matrix. If one assumes thatM has only one such eigenvalue
(λ1 = 1), with eigenvectore1, then, in the limit of largej , vj converges to this eigenvector,
independently of the initial conditions.

As a consequence, the evolution of the rim attains a stable statistical regime after successive
steps of growth and this regime is governed solely by the statistics represented by the
eigenvector with eigenvalue one. Barrioet al found for the (B2O3) that the eigenvector is

e1 = 1

84ξ2 + 107ξ + 25



1 + 4ξ

24ξ2 + 34ξ + 9

24ξ2 + 34ξ + 10

12ξ + 5

3ξ(4ξ + 3)

2ξ(12ξ + 7)


.

In this model the only free parameter isξ , the excess free energy used when closing a ring,
and is written as (E1− E2) = kT ln(ξ) = F .

3. Results and comparison with experiment

In this paper we wish to show that, using the probability of forming a ring for B2O3 obtained
from the stochastic method, we can derive the Arrhenius dependence for the viscosity. To
do this we proceed as follows. First we identify the average transition probability with the
average transition probability of forming a ring for B2O3 and, then, we apply the method of
temperature derivative obtained the form of the relaxation time.

The probability of forming a ring when passing from thej th layer to the (j + 1)th one is
simply given by counting the proportion of rings that were formed between the stepj and the
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stepj + 1. If we calculate for a large number of steps of growth,P
j

B can be replaced by its
limiting value and for B2O3 Barrioet al found that

P∞B =
ξ(24ξ + 16)

84ξ2 + 107ξ + 25
. (5)

Raman intensity data for molten B2O3 indicate [11] that BO3 triangles in boroxol rings
are favoured energetically over BO3 triangles in a random network. The intensity data also
suggests that the glass transition for B2O3 corresponds to the temperature at which rapid
breakdown of boroxol rings first occurs. Therefore the transition probability is the probability
of forming a ring for the B2O3. Indeed, since the viscosity is proportional to the relaxation
time (τ ), and the relaxation time is inversely proportional to the average transition probability,
then

η ∝ 1

P∞B
= 84ξ2 + 107ξ + 25

24ξ2 + 16ξ
. (6)

Taking the derivatives dn logx/dT n, dn logx/ d(1/T )n (n = 1, 2) of equation (6) (x = fmax
(Hz), σdcε

−1
0 (s−1), η−1 (Poise−1)), we find that[

d log(P∞B )
dT

]−1/2

= T
[
(E2 − E1)

kB

]−1/2

L
−1/2
B2O3

(7)[
−d log(P∞B )

d(1/T )

]−1/2

=
[
(E2 − E1)

kB

]−1/2

L
−1/2
B2O3

(8)

where

LB2O3 ≡
48ξ2 + 16ξ

24ξ2 + 16ξ
− 168ξ2 + 107ξ

84ξ2 + 107ξ + 25
. (9)

The values of andLB2O3 for ξ different activation energies are given in table 1.
For boron trioxide, B2O3, Macedo and Litovitz [12] measured the longitudinal ultrasonic

relaxation and found that above 800◦C the shear viscosity exhibits an Arrhenius temperature
dependence and a single relaxation time for the shear relaxation process. The longitudinal
relaxation is a mixture of shear and compressional processes [13]. They consider the
shear relaxation time and the adiabatic constant volume compressional relaxation time to be
approximately equal. Then, their common relaxation time data obey the Arrhenius temperature
dependence:τ = 7.24× 10−12 exp(8750K/T ) s. Taukeet al [14] measured the ultrasonic
shear and longitudinal relaxation in B2O3 and confirmed the earlier result. Above 800◦C
they found that the shear relaxation spectrum is single and the relaxation time follows an
Arrhenius law with the same slope as the measured shear viscosity, as one would expect from
the relationη = τG∞. Most oxide glasses show a decreasing activation energy of viscous
flow with increasing temperature, and indeed for B2O3 the activation energy varies from 83 to
12 kcal mol−1 between 26 and 1300◦C [15].

Taking the typical values for the activation energy as shown in table 1,ξ � 1 and
LB2O3 ≈ 1 so that equations (7) and (8) can be written in the following form:[

d log(P∞B )
dT

]−1/2

= T
[
(E2 − E1)

kB

]−1/2

(7a)

and [
−d log(P∞B )

d(1/T )

]−1/2

=
[
(E2 − E1)

kB

]−1/2

. (8a)

Also we can calculate2(x), and ifLB2O3 is a constant, starting with equation (6) we obtain

2(x) = −T/2. (10)
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Table 1. The values forLB2O3 given by equation (9) andξ for different temperatures and different
activation energies. To obtain the values we take typical activation energies for the B2O3 (from
E2−E1 = 12 kcal mol−1 toE2−E1 = 83 kcal mol−1). It is clear that the temperature dependence
of LB2O3 can be neglected. In fact the range of validity for equations (7a), (8a) and (11) should
be inferred from the experimental data, not from equation (9) because for all the values of the
activation energy, and for the respective range of temperatures its value is approximately equal to
one.

LB2O3 LB2O3 LB2O3

T (K) ξ1=exp
(
−15 kcal mol−1

kBT

)
(ξ1) ξ2=exp

(
−40 kcal mol−1

kBT

)
(ξ2) ξ3= exp

(
−80 kcal mol−1

kBT

)
(ξ3)

100 3.3× 10−34 1 5.31× 10−90 1 2.82× 10−179 1
200 2.69× 10−17 1 6.51× 10−45 1 4.24× 10−89 1
300 9.78× 10−12 1 4.37× 10−30 1 1.91× 10−59 1
400 5.71× 10−9 0.99 1.04× 10−22 1 1.08× 10−44 1
500 2.28× 10−7 0.99 2.70× 10−18 1 7.31× 10−36 1
600 3.26× 10−6 0.99 2.34× 10−15 1 5.48× 10−30 1
700 1.99× 10−5 0.99 2.92× 10−13 1 8.54× 10−26 1
800 7.73× 10−5 0.99 1.08× 10−11 1 1.18× 10−22 1
900 2.22× 10−4 0.99 1.80× 10−10 1 3.27× 10−20 1

1000 5.15× 10−4 0.99 1.71× 10−9 1 2.93× 10−18 1
1100 1.02× 10−3 0.99 1.07× 10−8 0.99 1.15× 10−16 1
1200 1.82× 10−3 0.99 4.97× 10−8 0.99 2.47× 10−15 1
1300 2.966× 10−3 0.99 1.81× 10−7 0.99 3.30× 10−14 1
1400 4.49× 10−3 0.99 5351× 10−7 0.99 3.04× 10−13 1
1500 6.45× 10−3 0.99 1.44× 10−6 0.99 2.08× 10−12 1

If the equations (7a), (8a) and (10) are integrated the Arrhenius equations is obtained, namely

η = η0 exp

(
E2 − E1

kBT

)
= η0 exp

(
B

T

)
(11)

where the constantη0 is the pre-exponential factor andB is a constant ((E2 − E1)/kB)
that can be determined comparing with the experimental data for the activation energy. The
equation (11) is the main result of this paper. Notice should be made of the fact that although
ξ = exp(−(E2 − E1)/kB) is a small number,η ∼ ξ−1 is not. Further, the constantη0 in
(11) may be obtained from a plot ofη against 1/T . Therefore the two unknown parameters
in this equation may be obtained from the experiment. Hence, starting with a simple model
the stochastic matrix method and taking the relaxation time or the viscosity proportional to
the probability of forming a ring, we obtain the Arrhenius equation for the viscosity with two
unknown parameters,B andη0.

4. Concluding remarks

In this work we obtain a theoretical Arrhenius equation for the average relaxation time (or
viscosity) of the strong glass forming liquid B2O3 using the stochastic matrix method proposed
by Barrioet al [9]. To do this we take the average relaxation time as inversely proportional to
the average transition probability and the transition probability as the probability of forming a
ring calculated for a large number of steps of growth. To identify the equation that we obtain
for the average relaxation time we used the method of temperature derivation. The method
rests on focusing on the expressions dn logx/dT n and dn logx/d(1/T )n (n = 1, 2) which
reduce the number of fit parameters and linearize certain model functions. When an Arrhenius
equation is found two parameters remain to be determined,η0 andB. Comparison with the
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experiment provides us with these values.
The relevance of the method proposed in this work is based on the method of temperature

derivation to identify the form of the equation that describes the viscosity, namely the
requirements imposed by equations (7), (8) and (10). Comparing with the experimental data
obtained with the temperature derivative method, we can be sure about the range in which the
function that describes the viscosity is valid. On the other hand this method can be applied
to different theories. For example, if we start with the Adam–Gibbs [16] equation for the
viscosity, namely,η = η0 exp(K/T Sc(T ))whereK is a constant andSc(T ) the configurational
entropy, using the temperature derivative method one can obtain the value forSc(T ) by direct
comparison with the experimental values. On the other hand the constantK may be calculated
by the methods already discussed in [17], so that this procedure may be used as an alternative
way of computing the viscosity. The results so obtained may therefore serve as a basis to test
whether the Arrhenius or VFT forms for the viscosity are the adequate ones for representing
the experimental data. This comparison is based upon the fact that ifSc(T ) = constant one
obtains the Arrhenius form forη whereas ifSc(T ) = constantT −1, one obtains the VFT
equation [18].

Moreover, the results of this paper may be also extended to studyβ relaxation in B2O3 and
theα relaxation in other strong glass forming liquids if the glassy state may be associated with
the probability of assembling ring structures. Alsoα andβ relaxation processes in dendritic
systems can be studied by this method where, by the way, a non-Arrhenius equation for the
relaxation time is expected.
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